# A-LEVEL Mathematics 

MM05 - Mechanics 5
Mark scheme

6360
June 2018

Version/Stage: 1.0 Final

Mark schemes are prepared by the Lead Assessment Writer and considered, together with the relevant questions, by a panel of subject teachers. This mark scheme includes any amendments made at the standardisation events which all associates participate in and is the scheme which was used by them in this examination. The standardisation process ensures that the mark scheme covers the students' responses to questions and that every associate understands and applies it in the same correct way. As preparation for standardisation each associate analyses a number of students' scripts. Alternative answers not already covered by the mark scheme are discussed and legislated for. If, after the standardisation process, associates encounter unusual answers which have not been raised they are required to refer these to the Lead Assessment Writer.

It must be stressed that a mark scheme is a working document, in many cases further developed and expanded on the basis of students' reactions to a particular paper. Assumptions about future mark schemes on the basis of one year's document should be avoided; whilst the guiding principles of assessment remain constant, details will change, depending on the content of a particular examination paper.

Further copies of this mark scheme are available from aqa.org.uk

| $\mathbf{Q}$ | Solution | Mark | Total | Comment |
| :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1}$ | $T=2 \pi \sqrt{\frac{l}{g}}$ | B1 |  | B1: Quoting formula for <br> period. |
|  | $1.05 \times 2 \pi \sqrt{\frac{l}{g}}=2 \pi \sqrt{\frac{L}{g}}$ | M1 |  | M1: Increasing length by <br> $5 \%$. <br> A1: Correct length or ratio. <br> $L=1.05^{2} l=1.1025 l$ <br> $10.25 \%$ increase needed |
|  | A1 |  | A1: Correct percentage <br> increase in length. |  |
|  | Total |  | $\mathbf{4}$ |  |




| Q | Solution | Mark | Tot al | Comment |
| :---: | :---: | :---: | :---: | :---: |
| 4(a) | $\begin{aligned} & \frac{20}{0.5} e=1.6 \times 9.8 \\ & e=0.392 \\ & \text { Length }=0.892 \mathrm{~m} \end{aligned}$ | $\begin{aligned} & \hline \text { M1 } \\ & \text { A1 } \end{aligned}$ |  | M1: Equation to find extension. <br> A1: Correct extension. <br> A1: Includes |
| (b)(i) | $\begin{aligned} 1.6 \frac{d^{2} x}{d t^{2}} & =1.6 \times 9.8-T \\ & =15.68-\frac{20}{0.5}(x-0.1 \sin (10 t)-0.5) \\ \frac{d^{2} x}{d t^{2}} & =9.8-25 x+2.5 \sin (10 t)+12.5 \end{aligned}$ | M1 <br> M1 <br> A1 | 3 <br>  <br>  <br>  <br> 4 | M1: Equation of motion involving mg and $T$. M1: Attempts expression for tension. |
|  | $\frac{d^{2} x}{d t^{2}}+25 x=22.3+2.5 \sin (10 t)$ | A1 | 4 | A1: Correct tension. <br> A1: Required result from correct working. |
| (b)(ii) | $\begin{aligned} & \text { CF } \\ & \lambda^{2}+25=0 \\ & \lambda= \pm 5 i \end{aligned}$ | M1 |  | M1: Roots of aux equation. A1: Correct form of CF. |
|  | $x=A \cos (5 t)+B \sin (5 t)$ | A1 |  | M1: Correct |
|  | $\begin{aligned} & x=C \cos (10 t)+D \sin (10 t)+E \\ & \dot{x}=-10 C \sin (10 t)+10 D \cos (10 t) \end{aligned}$ | M1 |  | form of PI. A1: Correct derivatives. |
|  | $\ddot{x}=-100 C \cos (10 t)-100 D \sin (10 t)$ | A1 |  | M1: |
|  | $\begin{aligned} & -100 C \cos (10 t)-100 D \sin (10 t)+ \\ & \quad 25(C \cos (10 t)+D \sin (10 t)+E)=22.3+2.5 \sin (10 t) \end{aligned}$ | M1 |  | Substitution to find constants. A1: Correct |
|  | $E=\frac{22.3}{25}=0.892, C=0$ | $\begin{array}{\|l\|} \hline \text { A1 } \\ \text { A1 } \end{array}$ |  | values of $E$ and C. |
|  | $-100 D+25 D=2.5$ |  |  | A1: Correct $D$. A1: Correct PI. |
|  | $\begin{aligned} & D=-\frac{2 . v}{75}=-\frac{1}{30} \\ & x=0.892-\frac{1}{30} \sin (10 t) \end{aligned}$ | A1 |  |  |


|  | $\begin{aligned} & x=A \cos (5 t)+B \sin (5 t)+0.892-\frac{1}{30} \sin (10 t) \\ & x=0.892, t=0 \\ & 0.892=A+0.892 \\ & A=0 \\ & \dot{x}=5 B \cos (5 t)-\frac{1}{3} \cos (10 t) \\ & \dot{x}=0, t=0 \\ & 0=5 B-\frac{1}{3} \\ & B=\frac{1}{15} \\ & x=\frac{1}{15} \sin (5 t)+0.892-\frac{1}{30} \sin (10 t) \end{aligned}$ | M1 <br> M1 <br> A1 <br> A1 | 12 | M1: Equation to find $A$. <br> M1: Equation to find $B$. <br> A1: Correct $A$ and $B$. <br> A1: Correct expression for $x$. |
| :---: | :---: | :---: | :---: | :---: |
|  | Total |  | 19 |  |

\begin{tabular}{|c|c|c|c|c|}
\hline Q \& Solution \& Mark \& Total \& Comment <br>
\hline 5(a)

(b) \& \begin{tabular}{l}
$$
\begin{aligned}
\dot{\theta} & =\frac{2}{5} \\
\dot{r} & =\cos \theta \dot{\theta}=\frac{2}{5} \cos \theta \\
v^{2} & =(\dot{r})^{2}+(r \dot{\theta})^{2} \\
& =\frac{4}{25} \cos ^{2} \theta+\frac{4}{25}\left(1+2 \sin \theta+\sin ^{2} \theta\right) \\
& =\frac{8}{25}(1+\sin \theta) \\
v & =\frac{2 \sqrt{2}}{5} \sqrt{r}
\end{aligned}
$$ <br>
$\therefore$ Speed proportional to $\sqrt{r}$
$$
\begin{aligned}
\ddot{r} & =-\frac{2}{5} \sin \theta \dot{\theta}=-\frac{4}{25} \sin \theta \\
\ddot{r}-r \dot{\theta}^{2} & =-\frac{4}{25} \sin \theta-(1+\sin \theta) \times \frac{4}{25} \\
& =-\frac{4}{25}(1+2 \sin \theta) \\
r \ddot{\theta}+2 \dot{r} \dot{\theta} & =\frac{8}{25} \cos \theta \\
a^{2} & =\frac{16}{625}\left(1+4 \sin \theta+4 \sin ^{2} \theta\right)+\frac{64}{625} \cos ^{2} \theta \\
& =\frac{16}{625}(5+4 \sin \theta) \\
a & =\frac{4}{25} \sqrt{5+4 \sin \theta} \\
a_{\max } & =\frac{12}{25}=0.48 \\
a_{\min } & =\frac{4}{25}=0.16
\end{aligned}
$$

 \& 

B1 <br>
M1 <br>
M1 <br>
A1 <br>
A1 <br>
M1 <br>
A1 <br>
A1 <br>
M1 <br>
A1 <br>
A1 <br>
A1

 \& 7 \& 

B1 Correct $\dot{\theta}$ <br>
M1: Expression for $\dot{r}$. <br>
M1: Finds $v^{2}$ <br>
A1: Correct $v^{2}$ <br>
A1: Correct constant and conclusion. <br>
M1: Attempts both components. <br>
A1: One correct component. <br>
A1: Second correct component. <br>
M1: Expression for $a^{2}$ <br>
A1: Correct magnitude of acceleration. <br>
A1: Correct min. <br>
A1: Correct max.
\end{tabular} <br>

\hline \& Total \& \& 12 \& <br>
\hline
\end{tabular}



